

QUAD ANALOG SWITCH/QUAD MULTIPLEXER

The MC14066B consists of four independent switches capable of controlling either digital or analog signals. This quad bilateral switch is useful in signal gating, chopper, modulator, demodulator and CMOS logic implementation.

The MC14066B is designed to be pin-for-pin compatible with the MC14016B, but has much lower ON resistance. Input voltage swings as large as the full supply voltage can be controlled via each independent control input.

- Triple Diode Protection on All Control Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Linearized Transfer Characteristics
- Low Noise 12 nV/√Cycle, f ≥ 1.0 kHz typical
- Pin-for-Pin Replacement for CD4016, CD4016, MC14016B
- For Lower RON, Use The HC4066 High-Speed CMOS Device

MAXIMUM RATINGS* (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18.0	v
Vin, Vout	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	v
lin	Input Current (DC or Transient), per Control Pin	± 10	mA
sw	Switch Through Current	± 25	۰mA
PD	Power Dissipation, per Package†	500	m₩
Tstg	Storage Temperature	- 65 to + 150	°C
τL	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating: Plastic "P and D/DW" Packages: -7.0 mW/°C From 65°C To 125°C Ceramic "L" Packages: -12 mW/°C From 100°C To 125°C

Control Switch 0=V_{SS} OFF 1=V_{DD} ON USS ≤V_{out} ≤V_{DD}

6-144

6

ELECTRICAL CHARACTERISTICS

	Symbol	VDD	Test Conditions	– 55°C			25°C		125°C		Unit
Characteristic				Min	Max	Min	Typ #	Max	Min	Max	
SUPPLY REQUIREMENTS (V	oltages Ref	erence	d to VEE)								. —
Power Supply Voltage Range	V _{DD}	—		3.0	18	3.0	_	18	3.0	18	V
Quiescent Current Per Package	IDD	5.0 10 15	$\begin{array}{l} \mbox{Control Inputs:} \\ \mbox{Vin} & - \mbox{VSS or VDD,} \\ \mbox{Switch I/O: VSS} \leqslant \mbox{V}_{I/O} \\ \leqslant \mbox{VDD, and} \\ \mbox{\Delta V_{Switch}} \leqslant 500 \mbox{ mV}^{**} \end{array}$	 	0.25 0.5 1.0		0.005 0.010 0.015	0.25 0.5 1.0		7.5 15 30	μA
(Dynamic Plus Quiescent, 10 channel compone		$\begin{array}{llllllllllllllllllllllllllllllllllll$	(0.07 μA/kHz)f + Typical (0.20 μA/kHz)f + (0.36 μA/kHz)f +					IDD		μA	
CONTROL INPUTS (Voltages	Reference	d to Ve	S)								
Low-Level Input Voltage	VIL	5.0 10 15	R _{on} = per spec, l _{off} = per spec		1.5 3.0 4.0	+	2.25 4.50 6.75	1.5 3.0 4.0		1.5 3.0 4.0	V
High-Level Input Voltage	VIH	5.0 10 15	R _{on} = per spec, I _{off} = per spec	3.5 7.0 11	 	3.5 7.0 11	2.75 5.50 8.25		3.5 7.0 11		V
Input Leakage Current	lin	15	V _{in} = 0 or V _{DD}		± 0.1	-	± 0.00001	±0.1	_	± 1.0	μA
Input Capacitance	C _{in}			_	_		5.0	7.5	_	-	pF
SWITCHES IN AND OUT (Vo	Itages Refe	renced	to V _{SS})								
Recommended Peak-to- Peak Voltage Into or Out of the Switch	v _{1/O}	_	Channel On or Off	0	VDD	0	_	VDD	0	VDD	V _{p-p}
Recommended Static or Dynamic Voltage Across the Switch** (Figure 1)	∆V _{switch}	-	Channel On	0	600	0	—	600	0	300	mV
Output Offset Voltage	Voo	—	Vin = 0 V, No Load	-			10		_		μV
ON Resistance	R _{on}	5.0 10 15	$\begin{array}{l} \Delta V_{switch} \leqslant 500 \text{ mV}^{**}, \\ V_{in} = V_{IL} \text{ or } V_{IH} \\ (Control), \text{ and } V_{in} = \\ 0 \text{ to } V_{DD} \text{ (Switch)} \end{array}$		800 400 220	 _	250 120 80	1050 500 280	-	1200 520 300	11
ΔON Resistance Between Any Two Channels in the Same Package	ΔR _{on}	5.0 10 15			70 50 45		25 10 10	70 50 45		135 95 65	Ω
Off-Channel Leakage Current (Figure 6)	loff	15	V _{in} = V _{IL} or V _{IH} (Control) Channel to Channel or Any One Channel	—	± 100	_	± 0.05	± 100	_	± 1000	nA
Capacitance, Switch I/O	C _{I/O}	—	Switch Off	—	_		10	15			рF
Capacitance, Feedthrough (Switch Off)	C _{I/O}	_		—	-	-	0.47	-		_	pF

#Data labeled "Typ" is not to be used for design purposes, but is intended as an indication of the IC's potential performance.
**For voltage drops across the switch (ΔV_{Switch}) >600 mV (>300 mV at high temperature), excessive V_{DD} current may be drawn; i.e. the current out of the switch may contain both V_{DD} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded. (See first page of this data sheet.)

6-145

Characteristic	Symbol	V _{DD} Vdc	Min	Typ #	Max	Unit
Propagation Delay Times V _{SS} = 0	Vdc					
Input to Output ($R_L = 10 \text{ k}\Omega$)	tPLH, tPHL					ns
^t PLH, tp _{HL} = (0.17 ns/pF) С _L + 15.5 ns		5.0	_	20	40	
^t PLH, t _{PHL} = (0.08 ns/pF) C _L + 6.0 ns		10	_	10	20	
^t PLH, t _{PHL} = (0.06 ns/pF) C _L + 4.0 ns		15		7.0	15	
Control to Output ($R_L = 1 \ k\Omega$) (Figure 2)						
Output "1" to High Impedance	^t PHZ	5.0	-	40	80	ns
		10	-	35	70	
		15		30	60	
Output "0" to High Impedance	1 _{PLZ}	5.0	Γ	40	80	ns
	,	10	- 1	35	70	
		15	—	30	60	
High Impedance to Output "1"	^t PZH	5.0	_	60	120	ns
		10	_	20	40	
		15	_	15	30	
High Impedance to Output "0"	tori	5.0		60	120	ns
high impedance to Output to	^t PZL	10	_	20	40	
		15	_	15	30	
Second Harmonic Distortion VSS =	- 5 Vdc -	5.0		0,1	_	%
(Vin = 1.77 Vdc, RMS Centered @ 0.0 Vdc,						
$R_L = 10 k\Omega$, f = 1.0 kHz)						
Bandwidth (Switch ON) (Figure 3) V _{SS} =	– 5 Vdc —	5.0		65	-	MHz
$(R_L = 1 \ k\Omega, 20 \ Log \frac{V_{out}}{V_{in}} = -3 \ dB, \ C_L = 50 \ pF, \ V_{in} = 5$	V _{p-p})					
Feedthrough Attenuation (Switch OFF) V _{SS} =		5.0		50		dB
$(V_{in} = 5 V_{p-p}, R_L = 1 k\Omega, f_{in} = 1.0 MHz)$ (Figure 3						
Channel Separation (Figure 4) VSS =	-5 Vdc	5.0	- 1	- 50	_	dB
$(V_{in} = 5 V_{p-p}, R_L = 1 k\Omega, f_{in} = 8.0 MHz)$						
(Switch A ON, Switch B OFF)						
Crosstalk, Control Input to Signał Output (Figure 5)						
	- 5 Vdc	5.0	_	300		mV _{p-}
$(R_1 = 1 k\Omega, R_L = 10 k\Omega, Control t_{TLH} = t_{THL} = 20$				1	l.	

6

*The formulas given are for the typical characteristics only at 25°C #Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, v_{in} and v_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or $V_{DD}).$ Unused outputs must be left open.

PIN ASSIGNMENT

	\sim
1 🖂 in 1	
2 - Out 1	Control 1 == 13
3 - Out 2	Control 4 12
4 💳 in 2	in 4 🔁 11
5 Contr	ol 2 Out 4 10
6 - Contr	ol 3 Out 3 🗔 9
7 ⊂ ∨ _{SS}	in 3 🗖 8

6-146

TEST CIRCUITS

FIGURE 1 - AV ACROSS SWITCH

FIGURE 3 - BANDWIDTH AND FEEDTHROUGH ATTENUATION

FIGURE 5 - CROSSTALK, CONTROL TO OUTPUT

FIGURE 4 -- CHANNEL SEPARATION

FIGURE 6 - OFF CHANNEL LEAKAGE

6

 $V_{C} \approx -5.0$ V to + 5.0 V Swing

Ŧ

6-147

FIGURE 2 - TURN-ON DELAY TIME TEST CIRCUIT AND WAVEFORMS

FIGURE 7 - CHANNEL RESISTANCE (RON) TEST CIRCUIT

TYPICAL RESISTANCE CHARACTERISTICS

6

6-148

10

APPLICATIONS INFORMATION

Figure A illustrates use of the Analog Switch. The 0-to-5 volt digital control signal is used to directly control a 5 volt peak-to-peak analog signal.

The digital control logic levels are determined by V_{DD} and V_{SS} . The V_{DD} voltage is the logic high voltage; the V_{SS} voltage is logic low. For the example, $V_{DD} = +5 V =$ logic high at the control inputs; $V_{SS} =$ GND = 0 V = logic low.

The maximum analog signal level is determined by V_{DD} and V_{SS}. The analog voltage must not swing higher than V_{DD} or lower than V_{SS}.

The example shows a 5 volt peak-to-peak signal which allows no margin at either peak. If voltage transients above V_{DD} and/or below V_{SS} are anticipated on the analog channels, external diodes (D_x) are recommended as shown in Figure B. These diodes should be small signal types able to absorb the maximum anticipated current surges during clipping.

The absolute maximum potential difference between V_{DD} and V_{SS} is 18.0 volts. Most parameters are specified up to 15 volts which is the *recommended* maximum difference between V_{DD} and V_{SS} .

6

· ·----

FIGURE A - APPLICATION EXAMPLE + 5 V VDD Vss - 5.0 V + 5 V 5 Vp.p SWITCH C IN Analog Signal 5 Vp-p SWITCH + 2.5 V റ OUT Analog Signal External CMOS MC140668 0-to-5 V digital GND Digital Control Signals Circuitry

FIGURE B - EXTERNAL GERMANIUM OR SCHOTTKY CLIPPING DIODES

